Degree of Branching in Hyperbranched Poly(glycerol-co-diacid)s Synthesized in Toluene

نویسندگان

  • Victor T. Wyatt
  • Gary D. Strahan
چکیده

H NMR and C NMR spectrometry (1-dimensional and 2-dimensional) have been used to assign chemical resonances and determine the degrees of branching for polyesters synthesized by the Lewis acid (dibutyltin(IV)oxide)-catalyzed polycondensation of glycerol with either succinic acid (n (aliphatic chain length) = 2), glutaric acid (n = 3) or azelaic acid (n = 7) in quasi-melt solutions with toluene. When 1:1 and 2:1 (diacid:glycerol) molar ratios were used, it was found that the glutaric acid-derived polymers gave the highest degree of polymer branching (31.2%, 85.6%, respectively) after the 24 h reaction period followed by the succinic acid-derived polymers (39.4%, 41.9%, respectively) and the azelaic acid-derived polymers (9.9%, 13.9%, respectively). Reactions performed at reflux for 24 h resulted in a 70.8% and 56.7% decrease in degree of branching for succinic acid and glutaric acid-derived polyesters, respectively. There is no indication that degree of branching is significantly affected by the presence or absence of solvent according to the results obtained in this research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Reactive and Thermal Stable Hyperbranched Graft Copolymers/ Clay Nanocomposite via ‘Living’ Free Radical Polymerization

Exfoliated poly (Chloromethyl styrene-co-styrene)-g-polyacrylonitryle/organo- modified montmorillonite [P(CMSt-co-St)-g-PAN/O-MMT] nanocomposite was synthesized through solution intercalation method by using atom transfer and nitroxide mediated radical polymerization. At first, poly (chloromethyl styrene-costyrene) copolymer was synthesized by nitroxide - mediated “living” free radical polyme...

متن کامل

Chitosan/Poly(Amide-Imide) Blend Films: Studies on Thermal and Mechanical Stability, Morphology and Biodegradability

A diacid monomer was synthesized by the condensation of L-tryptophan amino acid and pyromellitic dianhydride (PMDA). The diacid was utilized for the synthesis of three types of poly(amide-imide)s (PAIs) using three different kinds of diamines. The synthesized monomer and PAIs were characterized using FT-IR, 1H-NMR and 13C-NMR spectroscopies and the PAIs were also used ...

متن کامل

N-Benzoyl dithieno[3,2-b:2′,3′-d]pyrrole-based hyperbranched polymers by direct arylation polymerization

BACKGROUND Although poly(N-acyl dithieno[3,2-b:2',3'-d]pyrrole)s have attracted great attention as a new class of conducting polymers with highly stabilized energy levels, hyperbranched polymers based on this monomer type have not yet been studied. Thus, this work aims at the synthesis of novel hyperbranched polymers containing N-benzoyl dithieno[3,23,2-b:2',3'-d]pyrrole acceptor unit and 3-hex...

متن کامل

Synthesis and Characterization of Poly(azomethine ester)s with a Pendent Dimethoxy Benzylidene Group

Recently, soluble poly(azomethine ester)s with good thermal stability and liquid crystalline properties are much sought after in opto-electronic field. One such attempt was to synthesize poly(azomethine ester)s with a pendent group. In this study, the newly synthesized diacid monomer benzalaniline 3’-4’dimethoxy terepthalic acid was condensed with two diol monomers to get the polymers with pend...

متن کامل

Structural effect on the resistive switching behavior of triphenylamine-based poly(azomethine)s.

Linear and hyperbranched poly(azomethine)s (PAMs)-based on triphenylamine moieties are synthesized and used as the functioning layers in the Ta/PAM/Pt resistive switching memory devices. Comparably, the hyperbranched PAM with isotropic architecture and semi-crystalline nature shows enhanced memory behaviors with more uniform distribution of the HRS and LRS resistances.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012